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Abstract. Operator regnlarization, together with the background field method, is used to
calculate the one-loop renormatization constant of Chern~Simons field theory. The result shows
the existence of the famous k shift, i.e. &k — &+ sgn(x)Cy.

In this paper, we adopt coperator regularization with the background field methed to calculate
one-loop renormalization of perturbative Chern—Simons field theory, which preserves the
explicit quantum gauge symmetry [1,2]. As we all know, this problem has been paid much
attention for years [3-13]. The results seem to depend on regularization schemes, some
of them show the existence of the & shift, i.e. £ — & + sgn(%)Cv [3-9,13], and others
do not [10-13]. One conjecture is that the result depends on the gauge invariance of the
regularization. Our result shows the existence of the & shift in operator regulanzatmn
The non-Abelian classical Chern—Simons action is

S[.A]:——.f TeAA A+ 2AA AR A) o
47 M

where A = AJT9dx#, T“ are representation matrices of SU(N) generators. The

normalization we take is Tr(7*T%) = 15, The parameter & must be an integer in order to
make the quantum theory gauge invariant. Making the replacement

=4/l A—gA o)
we can express the classical action as
5:[A] = sgn(k) [ Tr(AAdA+ %gA AAA A 3)

As is done in the background field method [2], we write A4 as A(x) = A(x) + Q(x),
where A(x) is the background field, i.e. satisfies 8S[A]/6A = 0, and Q(x) is the
quantum field. Choosing the covariant background gauge condition D““”[A]Qb = {,
D[A] = 9,8 + gf*? AS, and using the standard Faddeev—Popov technique, one finds
the generat:ing functional of Green functions

Z[A)l = f PQDcDe expi{Sr[A + Q01— f (dx) EIE(D,L[A] 0% (x))*
- f (dx) & (x) Dy [A] D**[A + Q] c”(x)}. (4
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The one-loop quantum generating functional is
Zi{A]l = f DG DcDi expiSfAlexpi f {dx) [Qﬁ(sgn(k)[—%e“”" 8,8
+ LgetP FrAt] + %D““{A]D"*[A]) %+ E"Dj’[A]D“‘*[A]c"}

det(D#e¢[A]1D[A])
det'/{sgn(k)[—e#¥93,85 + genve fabe A] + (1/a) DHac[A) DVeb[Al}
)

= expiS[A]

As in [1], we adopt operator regularization to evaluate the determinants. For an elliptic
operator H = Hy + H;, we have that

det(H) = exp TrIn(H) = expTr lim {;m [s;:" o) f dr ! exp(-Ht)“ ©

and

Trexp(—Ht) = Tre~FotHt

2 pl
= T:[c-ffuf+(—:)e—ff°‘ﬂ,+—-—( 2 f du e~ (Wt g euthot py,

3
( ;) f du u[ d‘Uc (I M)HOIH e—u(l—u)ﬁu:H e—uvﬁer . ] (7)

where Hj is defined to be the part of H independent of the background field A and H;
is a polynomial of the A field. From (6) and (7), one can see that H must be an elliptic
operator in order to ensure convergence of the ¢ integrals. Furthermore, we observe that, for
Chern—Simons field theory, choosing s = 1 is sufficient to make the integral Uv convergent.

From (5), it is easy to see that the Hy part of the ghost determinant operator is obviously
positive-definite after a Wick rotation. The operator in the denominator is also well behaved.
For the sake of calculational convenience, we take det H = [det H*1'/2, Thus (5) may be
expressed as

Z)[A] = expi§[A]exp {}1_1;% [ — d%G(s)} — 51_,3(1) [ _ %%B(s)]} ®
where
66) = g5 [ dt ! TrexpDFLAID1410
T'(s) Jo
= G 24(5) + Gaaals) + -+
B(s) === f dt "~ Trexp [ sgn(k)(~e"3,6% + ge# o2 4°) 9

I'(s)
+ (1/e) DH[A] D" [A]]

= Baa(s) + Baaals)+---
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When we calculate the two-point function, we only need to consider G 44(s) and Baa(s),

ie. the terms guadratic in A fields in the expansion of G(5) and B(s). Let us first se¢ the
contribution from the ghost part

I'(s)
+ (_t)z fl du c__(l_u)plnsab
2 i} i

Gaals) = — foo dr Ty [(—I)G— ek [__ngcdefekIAi(x)Aﬂk(x)]

>¢ﬁWW%+%wwMWwww&+%m”. (10

Introducing a complete orthonormal set | p}, the eigenstates of the operator p,, and making
use of the following relations in three dimensions

ei px

{(x|p) = ITeL

ffmmm=1
(11)

A =A —ix(p—g) A _ — d3x A( ) —ix{p—g)
(plAM)Ig) = Alp —q)e P-9)= | HymAklke
we find that

1 e
2 pad 1’"_1 3 3
GAA(s).-———P( )c vg2s _(Zn)i"fo dt fd pd’g

X [(—t)e"’z‘A‘; (p — a)4"(g — p)
2 ! —--[(lm-u) 2 ugt]e V8
+3 fo due P (b + gu)py + @)AM (p — 9)AY (g — p)
(12)
where Cy is the quadratic Casimir operator in the adjoint representation of the gauge group.

Shifting the integration variable p — p-+g. we can show that the first term in (12) vanishes,
so that

C o0 i d‘j d3
Gaals) = P(l) ‘;g Y5 gab f ds 41 fo du [ (2’;:)3‘1 expl—[(} — u)p* + uglt}
X (P + @) (py + @A (DY A (—p). (13)

Changing the integration variable ¢ — g + (1 — u)p and using

drq (@ _ 1 (Bt T +n/2T 01 —r —n/2)
@R (g2 + ) (16m2y4 T(n/2)T (m)
(14)
! - . T(mr®)
m—1 n=-1 _
fn dua” (1 —u) __I‘(m e
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we find that
1 C
GAA(s) = m ;g adbfds {Aﬂa(p)Avb(__p)
* f duf k! [q28 v+ (1 —26)pup.] f - dt s+ g—lg*+ull—u) p)e
0 (2n)? “ m A
(s +2)Cyg?
1 d3q ) \ .
> ‘/; duf (2JT)3 [q 5.:&1: + (1 i 2u) p)'-f-pl»'} [q2+u(1 _ u)pz)]s+2 }
_T(s+2)Cvg*

3 o vhe_
o) 2 stﬂfd [Au (P)A”(—p)

. . s — -)
Cyp2f2-s W T 9)
g fn du [a,wtu(l P e

INCE %)]}

_ 2 - 2y—~1/2—5
+ pppy(l — 2u)[u(l — u) p°] TE

Cvg 1
=78 8l

It —rE —sra +s)
T'(s +2)I'(3 —2s)

For Bs,(s), after a lengthy calculation, we finally find that

1
f d3pA”“(p)A“b(—p)——2)—l/2—_H(p v — Py Pu)

(15)

Cvg? 1 v 1
Baa(s) = — vzg ) f &p [A'M (p)a b(_P)W{stﬂv — Pupv)

r@d -sré -srg¢ +s)]
T(s +2)I'(3.— 25)

T +2IG — T — /DT (/2)
T(s + DPXOT A +5/2TE — )

x f & p A8 ()8 (522" p, 48 (~p) a6)

1
+ Cvg2 1'1‘31"—3/2“x sgn(k)

where we have used the properties of the projection operator and Feynman integral
parametrization

e Ph—Pap Nt — o rt (a.uv - @) o1V ppy e—l{a’p‘t%{
P

1 Tm+tn 1 xm(1 )
AkmBin = P(m)T(n) Jo [A%x + BI(1 — x)]»+e

(17}

_ F(km-}-ln) 1 ka-—l(l _x)!n—l
T I'km)T(n) Jo [Ax + B(1 — x)j+’
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From (8), (15} and (16), we know that the one-loop quantum correction to the two-point
function of the background fields is

1 T+9rE O —s/DT(s/2)
4% T(s + DI2OT A +5/9TG = 5)

.d
- Iim d—;[sgn(k)cvgz
X f &p Aﬁ(P)f?“b(Pz)""zew"’PpAﬁ(—P)]
C
= sgn(k)gﬁgz [ d3p Ai(p)ﬁ“be“”p ppAﬁ(—p)
=is n(k)-c—" 2 f dx 160 A% ()9, 4% (x)
= 1SgMR)E ) plt vy

Cvg? .

::f sgn(k) f Tr(A A dA) (18)
where we have taken I'(as)[;w0 & 1/os and f’ ()50 & —1/s2. Therefore the one-loop
wavefunction renormalization constant is

Cy
Zy=1 .
4 + g
The guantum correction to the three-point function of the background fields can be
obtained directly with the aid of the explicit gauge symmetry in the background field method.
This means that
Z, = Zy\2 (20
so the one-loop quantum corrected three-point function is

! .
ig (1 + Egz) sgn(k) f & pdq ;4% (P) A (@A (p + D) €u

=i

(19)

C
= i(l + ngz) sgn(d) f Fx Lo f oy, A (PYA™ (@) A [~(p + )]

. Cy
= 1(1 + Eg"‘) sgn(k) f TrigA A AAA. (21)
From (5), (18) and (21), we have that, up to one loop
c
Z,[A] = exp [i(l + Z:’%gz) sgn(k) f TH(AAdA+2gA AN A A A)]. (22)

Considering the classical action (3} and the scale replacement (2), we find that

1 C
Zi[A]l = expi[(? + Zzl:_) sen(k) [Tr(A AdA+ %gA NAA A)]
4
and hence the one-loop effective action
k kyC :
T‘;[AJ:—;[-%(—)—K/TI(A/\CIA+§AAAAA). 24)

In summary, we have used the background field method and operator regularization to
calculate the one-loop renormalization of Chern—Simons field theory, and find the theory is
finite at one loop, and that the quantum correction only appears in the shift of the coupling

constant k —> k 4+ sgn(k)Cy.
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